Utilities need to match the supply of generated power with their customers’ demand for power. Demand isn’t constant, however; it varies depending on what customers are doing. For example, during hot summer afternoons demand is much higher than most other times because of the need for more air conditioning.
To meet high demand utilities either have to activate peaking power plants or buy energy from other utilities. Both options are more expensive than operating base load power plants during times of lower demand.
Demand charges and time-of-use charges are used to pass those costs on to consumers. The concern with EVs – particularly EVs charged with direct current fast chargers (DCFCs) – is that they will create higher peak demands than the grid can provide.
Several utilities, including Pacific Gas & Electric, San Diego Gas & Electric, Southern California Edison, and Hawaiian Electric, are already experimenting with time-of-use charges to send price signals that push drivers to charge during off-peak times. Some other utilities are lobbying their state utility boards to allow them to charge residential customers demand charges to provide similar price signals.
Customers pay for electricity in one of two ways: consumption, measured in kilowatt-hours (kWh); and demand, measured in kilowatts (kW). Consumption, also called usage, is the amount of energy used in each billing cycle. Demand, also called load, refers to the rate at which energy is used at any given moment. Customers on demand charge tariffs pay for the highest rate of energy use they reach – the peak demand – in each billing cycle. Most residential customers only pay for consumption. Most commercial customers pay for both demand and consumption.
However, according to the Rocky Mountain Institute demand charges “are a significant barrier to the development of viable business models to operate public DCFC networks.“
Perhaps there is a better solution.